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Abstract
We present a systematic analytical approach to the trapping of a random walk
by a finite density ρ of diffusing traps in arbitrary dimension d. We confirm the
phenomenologically predicted e−cdρtd/2

time decay of the survival probability,
and compute the dimension-dependent constant cd to leading order within an
ε = 2 − d expansion.

PACS number: 05.40.−a

1. Introduction

1.1. Motivations

It has been over 30 years that the trapping of a random walk in a medium with absorbing traps
has been the focus of physicists’ attention. The reason is twofold. First and more importantly,
the experimental relevance of modelling the diffusion of an exciton has led to a compact
formulation of the problem in terms of trapping of random walks. The second motivation is of
theoretical nature. Much is known on the static traps case. Connections between trapping and
Lifschitz tails in disordered electronic systems [1], statistics of rare events [2] and Brownian
motion theory have been established. That the problem bridges to other areas of physics stems
from the ubiquity of random walks and their applications.

Here we will concentrate our study on the diffusion of a random walker in the presence
of diffusing traps. The configuration of the traps evolves in time, instead of remaining frozen
in its initial distribution. Despite the simplicity of its formulation, this constitutes a genuine
many-body problem in which an infinite number of degrees of freedom are coupled: the
positions of the traps relative to that of the random walker are correlated.

Let us provide a more precise formulation of the problem we propose to investigate. We
are interested in the problem of a tagged walker (hereafter christened as ‘the walker’) evolving
in a medium in which a finite density ρ of diffusing traps is present. Both the traps and the
tagged walker have the same diffusion constant. Here we have set the diffusion constant to 1

2
for aesthetic reasons. However, it would be of interest to investigate the diffusion constants
ratio dependence, since, as shown in [3], at sufficiently low trap mobility there exists a rich
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crossover regime between static and mobile traps. When the walker and a trap meet on the
same site then, between t and t + dt , the walker has a probability β dt of dying.

The static traps case was ‘solved’ some 20 years ago using field-theoretic methods based
on instanton calculus [4–6] in the sense that the asymptotic behaviour of the survival probability
has been determined analytically. The one-dimensional case can be solved in the sense that
the survival probability can be computed exactly by the standard tools of random walk theory
[7, 8]. In the meanwhile the mobile traps case has resisted analytic approaches, even in one
space dimension, and it is only very recently that extensive numerical studies were devoted
to unravelling its fine properties [9]. What can be inferred, however, from phenomenological
arguments [11] or from low trap density expansions [12], is that the survival probability of the
tagged walker decays with time S as

Z(S) ∼
{

exp
(−cdρSd/2

)
d < 2

exp(−cdρS) d > 2
(1)

where cd is a dimension-dependent constant (universal in d < 2, but nonuniversal in d > 2).
What makes the problem analytically so difficult to tackle? One answer is that we are dealing
with a truly dynamical problem. There is no underlying static partition function, as opposed to
the static traps situation. This prevents, in particular, the use of quantum field theory methods
which proved so successful for static traps. Of course, other types of field-theoretic mappings
exist (dynamical theories built after the Doi–Peliti mapping), but all of them fail [10] to predict
the asymptotic behaviour of the survival probability: just as is the case for static traps, this
is a strong coupling problem not accessible with the usual perturbative toolbox. Finally, it is
interesting to note the close connection between the present trapping problem and the study of
systems of vicious walkers [13] which exhibit some analytic similarities (the one trap problem
is the two vicious walker problem).

Our goal in this paper is to cast the problem in a form suitable for a systematic analytic
treatment. We will go beyond the existing results for the survival probability by setting
our calculation in a systematic framework and by giving amplitudes to leading order in an
ε = 2 − d expansion.

1.2. Notations

Consider N random walkers in a volume V = Ld and denote by ρ = N
V

their average density
(eventually the thermodynamic limit N,V → ∞ with fixed ρ shall be taken). The positions
of these walkers are denoted by xi (s), their initial positions xi (0) being random in space.
Let r(s) denote the position of the tagged walker, which starts from the origin at time 0. We
employ Brownian motion functionals to describe the dynamics of the system. The action
governing the dynamics of the set of N + 1 walkers is A0 + Aint, where

A0[r, {xi}] = 1

2

∫ S

0
ds

[(
dr

ds

)2

+
∑

i

(
dxi

ds

)2
]

(2)

encodes the free motion of the particles. The interaction term reads

Aint[r, {xi}] = β
∑

i

∫ S

0
ds δ(d)(r(s) − xi (s)). (3)

It describes the trapping of r by the mobile traps xi at a rate β.
We define two types of averages, that with respect to the free action with an index 0,

〈· · ·〉0 =
∫

Drδ(d)(r(0))
∏

i

∫
Dxi

∫
ddxi(0)

V
· · · e−A0 (4)
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and that with respect to the full interacting process,

〈· · ·〉 = 〈· · · e−Aint〉0 (5)

without any index. Normalization is chosen so that 〈1〉0 = 1, so that 〈1〉 < 1.

1.3. Quantities of interest

We define the survival probability after time S by

Z(S) ≡ 〈1〉 (6)

and introduce the function Z(q, S) defined by

Z(q, S) ≡ 〈
eiq·r(S)

〉
(7)

which allows us to define the Fourier transform of the probability of presence of a walk that
has survived up until time S:

G(q, S) = Z(q, S)

Z(S)
. (8)

From the knowledge of G(q, S) it should eventually be possible to deduce the mean-square
displacement R2 ≡ −2d ∂G

∂q2 of a walk conditioned to survive. It is not a priori obvious
whether anomalous diffusion should occur and investigating this issue is beyond the scope of
the present work.

1.4. Preliminary analysis

1.4.1. Mobile traps, immobile tagged particle. Here we give the exact result for the survival
probability: denote by f (x, τ ) the probability that a random walk starting from x reaches the
origin for the first time exactly at time τ , the survival probability of a tagged particle (located
at the origin) is given by

Z(S) = V −N
∑
{xi }

N∏
i=1

(
1 −

S∑
τ=0

f (xi , τ )

)
=
(

1 − 1

V

∑
x

∑
τ

f (x, τ )

)N
N→∞� e−ρN (S) (9)

where N (S)
(� Sd/2(2π)d/2

�( ε
2 )�(2− ε

2 )
if d < 2 and ∝ S if d > 2

)
is the average of the number of distinct

sites visited by a random walk after τ steps. A functional derivation of this century old lattice
result can be deduced from [14]

N (S) =
∫

ddx

〈(
1 − exp

(
−β

∫
dsδ(d)(r(s) − x)

))〉
0

= βS
∑
n�0

(−1)n(βSε/2(2π)−d/2�(ε/2))n

�
(
2 + nε

2

) .

This already reproduces the characteristic features of the conjectured behaviour. Note that the
result (9) is exact—a property already noted in [15]—as long as the tagged walker is immobile.

1.4.2. Dimensionless variables. It is interesting to note that d = 2 appears to be the upper
critical dimension in this problem. We shall henceforth set ε ≡ 2 − d . This can be seen by
scaling out the walk’s length S. We build two independent dimensionless couplings

u ≡ βρS v = (4π)−d/2ρ−1S−d/2 (10)
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and further define

w ≡ uv = (4π)−d/2βS
ε
2 . (11)

The local trap density

ρ(x, t) ≡
N∑

i=1

δ(d)(x − xi (t)) (12)

is a Poissonian variable and it is therefore difficult to exactly integrate out its fluctuations. Note
that diffusion noise is often well-described by a Gaussian white noise. Such an approximation
allows density to become negative (if extremely low probability), and since those very regions
of low trap density govern dynamics, the importance of those unphysical configurations is
enhanced which completely messes any analysis based on the Gaussian noise approximation.
We are going to attempt an expansion in powers of the trapping probability (which is
proportional to β) and eventually take the limit in which this probability goes to 1. The
trapping rate β can be viewed as an extra parameter that can be used to probe the model’s
properties.

2. Perturbation expansion for Z(S)

2.1. General structure of the expansion

We want to evaluate Z(q, S) = 〈
eiq·r(S)

〉
. First we expand e−Aint in powers of the trapping

rate β, which yields

e−Aint =
+∞∑
n=0

(−β)n

n!

∫ S

0
ds1 · · · dsn

∫
ddk1

(2π)d
· · · ddkn

(2π)d

×
N∑

i1,...,in=1

exp


i
∫ S

0
dτy(τ )

n∑
j=1

kj	(sj − τ )




× exp


−i

n∑
j=1

∫ S

0
dτyij

(τ ) · kj	(sj − τ )


 exp


−i

n∑
j=1

xij (0) ·kj


 . (13)

We have denoted by y(s) = dr
ds

the velocity of the tagged walker and by yi = dxi

ds
that of trap i.

Consider the nth order term. It involves an average over n random walkers xi1 , . . . ,xin . We
depict a general nth order term by the diagram as shown in figure 1.

In a general diagram, the number of horizontal lines stands for the number of intersections
that have taken place between times 0 and S, this is also the power of β in the perturbation
expansion. The number of vertical lines, at order n, stands for the number of distinct traps
that will intersect the tagged walker’s trajectory. A diagram of order n involving m � n

distinct traps will be proportional to unvm = umwn−m. It is not a trivial task to determine the
proportionality constant; this will depend in a complicated manner on the ‘topology’ of the
diagram (the latter constant will be a function of ε).

2.2. An example: diagrams of order 4

As an example, we explicitly compute the contributions arising from the term n = 4 in
expansion (13). We depict those contributions by a series of diagrams as shown in figure 2.
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x3

S

in
creasin

g
tim

e

0x2rx1

Figure 1. The bold trajectory of the tagged walker r meets that of the traps x1,x2,x3. The
depicted diagram is of order 6 (there are six intersection times).

g

a c

d f

b

e

Figure 2. Shown are diagrams of order 4. (a) is proportional to u4, (b) to u3w, (c), (d), (e), (f ) to
u2w2 and (g) to uw3.

We now state the explicit evaluation from which one can induct the general properties of
those diagrams, such as their leading UV divergence. Diagrams (a), (b), (c), (d), (g) exhibit
no overlapping loops:

(a) = u4

4!
(14)

(b) = 1

2
u3w�(ε/2)

1

�(2 + ε/2)
(15)
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(c) = 1

2
u2 (w�(ε/2))2 2

�(3 + ε)
(16)

(d) = u2 (w�(ε/2))2 1

�(2 + ε)
. (17)

Diagrams (e), (f ) possess an overlapping loop:

(e) = u2w2
∫

0<x1<x3<x2<x4<1
dx1 dx2 dx3 dx4

(
(x4 − x3)(x2 − x1) − 1

4
(x2 − x3)

2

)− d
2

=
∫

dt1 dt2 dt3	(1 − t1 − t2 − t3)(1 − t1 − t2 − t3)

(
t1t2 + t2t3 + t3t1 +

3

4
t2
2

)− d
2

= 1

ε

(
−50

3
− 48 ln 3 +

824

9
ln 2 − 4√

3
ln

2 − √
3

2 +
√

3

)
+ O(1). (18)

The coefficient 3
4 = 4D(D+1)

(2D+1)2 , where D = 1
2 is the trap diffusion constant. If the traps were

static, one would have D = 0 and one would recover a standard φ4 propagator diagram with a
double pole in 4 − d . A nonzero diffusion constant acts as a partial UV regulator which shifts
the existence of a UV divergence from d = 4 down to d = 2.

(f ) = u2w2
∫

0<x1<x3<x4<x2<1
dx1 dx2 dx3 dx4(x4 − x3)

− d
2

(
x2 − x1 − 1

4
(x4 − x3)

)− d
2

= u2w2
∫

dt1 dt2 dt3	(1 − t1 − t2 − t3)(1 − t1 − t2 − t3)t
− d

2
2

(
t1 +

3

4
t2 + t3

)− d
2

= u2w2

(
1

ε
+ O(1)

)
. (19)

Finally,

(g) = u
(
w�

(ε

2

))3 1

�
(
2 + 3 ε

2

) . (20)

We see from these explicit expressions how the short-distance divergences (the ε poles) are
intertwined with the topology of the diagrams which are considered.

2.3. Nonoverlapping diagrams

We now focus the subclass of nonoverlapping diagrams: in those diagrams, there are no
overlapping loops. In order to fully characterize such a diagram, one needs

• its order, denoted by M; this is also the total number of intersections.
• the number n of distinct traps intersecting the walker’s path.
• the number of times mj trap j (j = 1, . . . , n) intersects (in a row) the walker’s path.

Of course,
∑n

j=1 mj = M .
• among the set {mj }nj=1, we count ν the number of mj which are equal. If they take ν

distinct values, we call p�, � = 1, . . . , ν, the number of mj coefficients that take the same
value indexed by �. This is necessary to properly determine the symmetry coefficient of
each diagram. The allowed values of ν run from 1 through νn = n if n can be written in
the form n = k(k + 1)/2 (k an integer) and νn = n − 1 otherwise.
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r

n traps

mn intersections

s
(2)
m2

s
(1)
1

x1

Figure 3. Trap x1 intersects the walker’s path at times s
(1)
1 , s

(1)
2 . . . , and then trap x2 intersects the

walker’s path at times s
(2)
i , etc.

In principle, the following calculation holds for mj � 2 but it can be seen to trivially extend
to mj = 1 without modification.

First consider a particular diagram in which the M intersection times ordered

0 � s
(1)

1 � s
(1)

2 � · · · � s(1)
m1

� s
(2)

1 � · · · � s(n)
mn

� S (21)

where the upper index j (j = 1, . . . , n) denotes the trap that intersects the walker’s path and
the lower index i counts the number of intersections of trap j (i = 1, . . . ,mj ). Its graphical
representation is as given in figure 3.

We call DM,n the value of that diagram. Given the sequence of intersections, we have to
evaluate

DM,n = (−β)M

M!
N(N − 1) · · · (N − n + 1)

∫
ds

(1)
1 · · · ds(n)

mn

∫
ddk

(1)

1

(2π)d
· · · ddk(n)

mn

(2π)d

×
〈

exp


i
∫ S

0
dτy(τ )


 n∑

j=1

mj∑
i=1

k
(j)

i 	
(
s
(j)

i − τ
)



× exp


−i

∫ S

0
dτ


 n∑

j=1

yj (τ )

mj∑
i=1

k
(j)

i 	
(
s
(j)

i − τ
)



× exp


−i

n∑
j=1

xj (0)

mj∑
i=1

k
(j)

i



〉

0
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= (−1)M

M!

N(N − 1) · · · (N − n + 1)

Mn
unwM−n

×
∫ 1

0
dt1

∫ 1−t1

0
dt2 · · ·

∫ 1−t1···−tM−1

0
dtM

×
(
t0
1 t

− d
2

2 t
− d

2
3 · · · t0

m1+1t
− d

2
m1+2 · · · t0

m1+···+mn−1+1 · · · t−
d
2

M

)

= (−1)M

M!

N(N − 1) · · · (N − n + 1)

Nn

un
(
w�

(
ε
2

))M−n

�
(
n + 1 + (M − n) ε

2

) . (22)

While the explicit evaluation is not a trivial task, the final result is particularly simple.
We now consider a general diagram of order M with n intersecting traps characterized by

{mj }j=1,...,n, {p�}�=1,...,ν . We do not specify the order in which the traps intersect the walker’s
path. Such a diagram has a value

M!∏n
j=1 mj !

∏ν
�=1 p�!

n!


 n∏

j=1

mj !


DM,n = (−1)M

n!∏ν
�=1 p�!

un
(
w�

(
ε
2

))M−n

�
(
n + 1 + (M − n) ε

2

) . (23)

At a given order M, a diagram involving n distinct walkers has a higher ε-divergence if it is
free of overlapping loops. Retaining for each order M only the nonoverlapping diagrams, we
get the survival probability

Z(S) = 1 +
+∞∑

M=1

M∑
n=1

∑
m1+ ··· +mn=M

M∑
ν=1

∑
p1+ ··· +pν=n

(−1)M
n!∏ν

�=1 p�!

un
(
w�

(
ε
2

))M−n

�
(
n + 1 + (M − n) ε

2

) . (24)

Since we are concerned with leading divergences, we will approximate
1

�
(
n + 1 + (M − n) ε

2

) � 1

n!
. (25)

Summing over all values of M − n yields a factor
(
1 + w

�( ε
2 )

)−n
. Setting g ≡ u

1+w�( ε
2 )

, we are
left with

Z(S) = e−g. (26)

In the limit u,w → ∞ with u
w

fixed, this leads to the asymptotic behaviour

Z(S) ∼ e−cερSd/2
(27)

with cε = 2πε + O(ε2). We emphasize that this is not a low density expansion since the
variable u

w
∝ ρSd/2 is held constant. We could also have written

Z(S) ∼ exp

[
−u

∞∑
n=0

(−w�
(

ε
2

))n
�
(
2 + nε

2

)
]

(28)

which is, to leading order in ε, equivalent to the previously mentioned result.
The only approximation made is to neglect overlapping diagrams. This is equivalent to

performing an ε-expansion of cε. Compare two diagrams that differ by the presence of an
overlapping loop instead of a nonoverlapping loop: in the latter, the leading short-distance
singularity is not constrained by time ordering. In the former, the time ordering associated
with an overlapping loop acts as a partial short-distance regulator. The related UV divergence
will always be smoother than that in the nonoverlapping counterpart. However, the power of
S that appears in equation (27) is exact since, at a given order in u and w, diagrams with or
without overlapping loops have the same S dependence. We argue that a diagram containing
at least a pair of overlapping loops has a softer ε-divergence than the equivalent diagram in
which the overlapping loops have been disentangled.
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2.4. Perturbation expansion of Z (q, S)

As before, we shall now keep in the perturbation expansion only diagrams containing no loop
overlap, this leads to

DM,n = (−β)M

M!
N(N − 1) · · · (N − n + 1)

∫
ds

(1)
1 · · · ds(n)

mn

∫
ddk

(1)
1

(2π)d
· · · ddk(n)

mn

(2π)d

×
〈

exp


i
∫ S

0
dτy(τ )


q	(S − τ ) +

n∑
j=1

mj∑
i=1

k
(j)

i 	
(
s
(j)

i − τ
)



× exp


−i

∫ S

0
dτ


 n∑

j=1

yj (τ )

mj∑
i=1

k
(j)

i 	
(
s
(j)

i − τ
)



× exp


−i

n∑
j=1

xj (0)

mj∑
i=1

k
(j)

i



〉

0

= (−1)M

M!
e− q2S

2
N(N − 1) · · · (N − n + 1)

Mn
unwM−n

×
∫ 1

0
dt1

∫ 1−t1

0
dt2 · · ·

∫ 1−t1 ··· −tM−1

0
dtM

×
(

t0
1 t

− d
2

2 e
q2St2

4 t
d
2

3 e
q2St3

4 · · · t0
m1+1t

− d
2

m1+2 e
q2Stm1 +2

4 · · · t0
m1+ ··· +mn−1+1 · · · t

− d
2

M e
q2StM

4

)

= e− q2S

4
(−1)M

M!
un
(
w�

(ε

2

))M−n
∫

dz

2π i
ez 1(

z + q2S

4

)n+1 z−(M−n) ε
2 (29)

where the integration path runs from −i∞ + 0 up to +i∞ + 0. The final result now reads

Z(q, S) = e− q2S

4

∫
dz

2π i
ez

∫ +∞

0
dx e−x(z+ q2S

4 ) exp

[
− ux

1 + w
�(ε/2)zε/2

]
(30)

so that G(q, S) = e− q2S

2 . Diffusion is not affected at this level of the approximation.

3. Discussion

3.1. Comparison with the static trap problem

When traps are static, the Brownian motion functional depends on the tagged walker’s
trajectory only through its local time χ(x, S) ≡ ∫ S

0 dsδ(d)(r(s) − x), hence it can be mapped
onto an O(n) field theory with an interaction term that can be shown to be

Aeff[r] = −
∫

ddx ln

(
1 − ρ + ρ exp

(
−β

∫ S

0
dsδ(d)(r(s) − x)

))

→ −
∫

ddx ln
(

1 − ρ + ρ e−βφ2
)
. (31)

We refer the reader to [4–6] and references therein for details on how to derive this
correspondence and how to exploit it. For small values of β or of the field this
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produces an attractive −φ4 theory (which has no minimum, and which is equivalent to
truncating the walker’s effective self-interaction potential to that of a self-attracting walk
−β2ρ2

∫
ds ds′δ(d)(r(s) − r(s′))), hence the complete knowledge of the interaction potential

is necessary. No truncation of the interaction potential can be used.
Attempting an expansion in powers of β will generate self-interaction diagrams that must

be evaluated in a standard way (a loop corresponds to a δ(r(s) − r(s′)) interaction). Loops in
diagrams occur when a trap is visited at least twice. All those features have their counterparts
when traps are mobile.

If traps are mobile, the best Langevin equation that describes the density of the diffusing
traps is

∂tρ − D�ρ = η 〈η(x, t)η(x′, t ′)〉 = 2Dρ∇∇′δ(t − t ′)δ(d)(x − x′). (32)

If this Langevin equation were exact (which it is not since the density is a Poissonian variable
and not a Gaussian one), this would lead to an effective interaction term depending only upon
the path r:

Aeff[r] = −β2ρ2
∫ S

0
ds ds′ 1

(4πD|s − s′|)d/2
exp

[
− (r(s) − r(s′))2

4D|s − s ′|
]

. (33)

We now see that the δ(d)(r(s) − r(s′))-function appearing in the static trap case has been
replaced by g(r(s)−r(s′)) (with g(x, τ ) ≡ (4πD|τ |)−d/2 e−x2/(4D|τ |) and D = 1/2). In fact,
any given graph of the static trap problem has its mobile trap counterpart, which is evaluated
simply by replacing the δ-function in the loops (whether overlapping or not) by the traps
propagator g. There is a one-to-one correspondence between the graphs of the two problems.

3.2. Beyond the leading order

For static traps the mean-square displacement is known [7] to scale as R2 ∼ S
d+1
d+2 and then

return to the origin probability as S− d
d+2 . Within the framework of our approximation, if traps

are diffusing, we find that both the mean-square displacement and the return to the origin
probability take their simple random walk asymptotics. Expanding the function G(q, S)

beyond leading order in ε shows that this picture might not hold for the full interacting theory.
Indeed, the neglected UV divergences could be responsible for a modified scaling behaviour.

For instance, one can show that G(q, S) = e− q2S

2
(
1 + u4v2

ε
F (q2S) + O(1)

)
, with F a known

function that can easily be expanded in the vicinity of 0. Deeper insight into the structure
of the perturbation expansion is required before exploiting such results in the spirit of the
approach developed by Duplantier for polymers [16].

3.3. Conclusion

We have given the first systematic approximation scheme for the survival probability of a
random walk evolving in a medium infested with freely diffusing traps. Our method exploits
the properties of low-dimensional Brownian motion. As opposed to the static trap case, no
mapping to an equilibrium-like field theory exists and due to the strong coupling nature of the
problem the elegant field-theoretic methods of reaction–diffusion problems fail. Extending the
Brownian motion formalism to truly nonequilibrium processes therefore proved unexpectedly
fruitful. The method which we have elaborated should now be put to the test on a series of
related problems which we now list. The first question that comes to mind is concerned with
the scaling properties of a surviving path: what is the scaling behaviour of the walker’s mean-
square displacement between 0 and S, provided it has survived up until that time. Questions
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of lesser importance concern the number of distinct sites visited by the walker, its return to the
origin probability or the algebraic area swept (still restraining the average to surviving paths).
Numerical approaches are usually difficult to implement [9] when it comes to exploring those
properties due to the poor statistics over surviving events. Future work should address these
issues.
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